Wednesday, June 3, 2015

Useful chart comparing bang for the buck of various battery technologies

The other day, some other curious people and I ran numbers comparing the per-kWh price of the Tesla Powerwall & Powerpacks (the utility-scale battery options described on the bottom of this page) with top competitors on the market. Admittedly, that was too simplistic a comparison. The kWh rating provided for all of these products is simply the maximum amount of electricity they can store at one point in time. So, in the case of the Powerwall, 7 kWh means that the battery can hold up to 7 kWh of electricity at one time, similar to how a 5-gallon jug of water can hold up to 5 gallons of water.

You have to multiply that capacity rating by # of cycles (# of times the battery will be filled up and then emptied), depth of discharge (whether the battery can be fully emptied during each cycle or needs to be only 80% emptied, 70% emptied, etc), and efficiency (how much electricity is actually transmitted, not lost, in each cycle), and then divide by price to determine a per-kWh price for all of the kilowatt-hours your system is expected to produce… before degrading to 80% of its rated capacity, that is (at which point it’s actually still useful, but that’s apparently the global standard for “end of product life”).

As you can see, there are a number of assumptions you have to make to perform these calculations, and even if all of your assumptions are correct, it’s not like the products are completely dead at the end of the studied time period. This also leaves out operational costs (which we’ll assume to be $0 in the calculations below).

Anyhow, this is the best method I’ve found for comparing Tesla’s Powerwall and Powerpacks to top products on the market. More importantly, on the residential side, the numbers should help a consumer to evaluate the cost-effectiveness of getting a Powerwall (should you get commercial access to one) — that’s the main aim in the next section of this article. Note that I’ve actually left out “competing” lithium-ion and lead-acid batteries in the residential section. Basically, even at a glance, it’s clear that they don’t compete with the Powerwall, so I didn’t bother finding all of the specs and doing the calculations. If you want to do so for any particular battery, I’m happy to add the info in, but I’ll need links or company spec sheets indicating cycle life, expected DoD, efficiency, and price in order to do so.

With a ridiculous amount of help from three wonderful CleanTechnica readers, below are the assumptions and results, split into a “residential” section and a “utility-scale” section.
Residential Battery Storage — Tesla Powerwall x 4 vs Aquion Energy x 2 vs Iron Edison x 1

Subheading have you confused? I ran the numbers for 4 Powerwall purchase scenarios, 2 Aquion Energy products, and 1 Iron Edison product. Since the intro above was too long already, I’ll jump into the table first and list some of the takeaways and the assumptions underneath it:

No comments:

Post a Comment